Thursday, 13 July 2017

real analysis - Find the limit $lim_limits{nto{infty}}n^2(sqrt[n]{x}-sqrt[{n + 1}]{x})$ and my inquiry about Stolz-Cesàro theorem



Let $x>0$, find the limit
$$\lim_\limits{n\to{\infty}}{n^2\left(\sqrt[n]{x}-\sqrt[{n + 1}]{x}\right)}$$



I use Maclaurin series and find out that the limit is $\ln x$.

And this is the answer I get from a math forum:



"Let $x_n=\sqrt[n]{x}-1$, $y_n=\dfrac{1}{n}$, then $(x_n)\to0,(y_n)\to0,(y_n)\downarrow$ when $n\to\infty$.



Use Stolz-Cesaro theorem, we have:



$$\mathop {\lim }\limits_{n \to \infty } \dfrac{{\sqrt[n]{x} - \sqrt[{n + 1}]{x}}}{{\frac{1}{n} - \frac{1}{{n + 1}}}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\sqrt[n]{x} - 1}}{{\frac{1}{n}}} = \ln x$$
Then $\mathop {\lim }\limits_{n \to \infty } {n^2}\left( {\sqrt[n]{x} - \sqrt[{n + 1}]{x}} \right) = \mathop {\lim }\limits_{n \to \infty } \dfrac{{{n^2}}}{{n\left( {n + 1} \right)}}\cdot\dfrac{{\sqrt[n]{x} - \sqrt[{n + 1}]{x}}}{{\frac{1}{n} - \frac{1}{{n + 1}}}} = \ln x$.



/END"




I just wonder what form Stolz-Cesaro theorem that he used, because I just learn Stolz-Cesaro theorem when $(y_n)\to\infty$.



Could anyone help me to get this? Thank you in advance.




This is "another form of Stolz theorem" in the forum that I mentioned: Let $(x_n),(y_n)$
be two sequences of real numbers. Assume $\mathop {\lim }\limits_{n \to \infty } {x_n} = \mathop {\lim }\limits_{n \to \infty } {y_n} = 0$; $y_n>0$, $(y_n)$ is strictly decreasing and the following limit exist $\mathop {\lim }\limits_{n \to \infty } \dfrac{{{x_{n + 1}} - {x_n}}}{{{y_{n + 1}} - {y_n}}} = L$. Then $\mathop {\lim }\limits_{n \to \infty } \dfrac{{{x_n}}}{{{y_n}}} = L$. Is this correct?



Answer




Indeed, most of us (including me) only learn of the version of the Stolz-Cesàro theorem where $b_n \to \infty$ and $(b_n)_{n \ge 1}$ is strictly increasing. Interestingly, there is another version of this theorem, where $b_n \to 0$ and $(b_n)_{n \ge 1}$ is strictly monotone:




Let $(a_n)_{n \ge 1}$ and $(b_n)_{n \ge 1}$ be sequences of strictly monotone real numbers with $a_n \to 0$ and $b_n \to 0$. If $\lim \limits _{n \to \infty} \dfrac {a_{n+1} - a_n} {b_{n+1} - b_n} = l \in \bar {\Bbb R}$, then $\left( \dfrac {a_n} {b_n} \right)_{n \ge 1}$ also has a limit and $\lim \limits _{n \to \infty} \dfrac {a_n} {b_n} = l$.




You may find a proof in "Real Analysis on Intervals" by A. D. R. Choudary and C. Niculescu - theorem 2.7.1 (you may even download the relevant chapter from the publisher).



This situation is a perfect parallel to what happens with l'Hospital's theorem, where again there are two versions: one when the denominator tends to $0$, another one when it tends to $\infty$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...