I was wondering is there is a general formula for $\sin(x_1+x_2+x_3+...+x_n)$ as well as for the cosine function. I know that $\sin(x_1+x_2)=\sin(x_1)\cos(x_2)+\cos(x_1)\sin(x_2)$ and $\cos(x_1+x_2)=\cos(x_1)\cos(x_2)-\sin(x_1)\sin(x_2)$ But I want to find a general formula for the sum of a finite number of angles for the Sine and the cosine but I didn't noticed any pattern. I suspect that it may have a recursive pattern. Any suggestions and hints (not answers) will be appreciated.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment