Friday 14 July 2017

calculus - Compute $sumlimits_{n = 1}^{infty} frac{1}{n^4}$.





Compute the Fourier series for $x^3$ and use it to compute the value of $\sum\limits_{n = 1}^{\infty} \frac{1}{n^4}$.




I determined the coefficients of the Fourier series, which are



$$a_0 = \dfrac{\pi^3}{2}; \qquad a_n = \dfrac{6(\pi^2 n^2 - 2)(-1)^n + 12}{\pi n^4}$$



Then, I get




$$x^3 = \dfrac{\pi^3}{4} + \sum\limits_{n = 1}^{\infty} \dfrac{6(\pi^2 n^2 - 2)(-1)^n + 12}{\pi n^4}\cos(nx)$$



If $x = \pi$, then



$$\begin{aligned}
\pi^3 &= \dfrac{\pi^3}{4} + \sum\limits_{n = 1}^{\infty} \dfrac{6(\pi^2 n^2 - 2)(-1)^n + 12}{\pi n^4}\cos(n\pi)\\
\dfrac{3\pi^3}{4} &= \sum\limits_{n = 1}^{\infty} \dfrac{6(\pi^2 n^2 - 2)(-1)^n + 12}{\pi n^4}(-1)^n
\end{aligned}$$



I'm stuck. It's easy to compute $\sum\limits_{n = 1}^{\infty} \frac{1}{n^2}$, using the Fourier series, but for this type of problem I'm stuck.




Any comments or suggestions? By the way, I know that



$$\sum\limits_{n = 1}^{\infty} \dfrac{1}{n^4} = \dfrac{\pi^4}{90}$$



I need to know how to get there.


Answer



From your identity



\begin{equation*}

\frac{3\pi ^{3}}{4}=\sum_{n=1}^{\infty }\frac{6(\pi ^{2}n^{2}-2)(-1)^{n}+12}{
\pi n^{4}}(-1)^{n}
\end{equation*}



expanding the right hand side and using the result $\sum_{n=1}^{\infty }\frac{1}{n^{2}}=\frac{\pi^2}{6}$, we get



\begin{eqnarray*}
\frac{3\pi ^{4}}{4} &=&\sum_{n=1}^{\infty }\frac{6(\pi
^{2}n^{2}-2)(-1)^{n}+12}{n^{4}}(-1)^{n} \\
&=&6\pi ^{2}\sum_{n=1}^{\infty }\frac{1}{n^{2}}-12\sum_{n=1}^{\infty }\frac{1

}{n^{4}}+12\sum_{n=1}^{\infty }\frac{(-1)^{n}}{n^{4}} \\
&=&\pi ^{4}-12\sum_{n=1}^{\infty }\frac{1}{n^{4}}-12\sum_{n=1}^{\infty }
\frac{(-1)^{n-1}}{n^{4}}.
\end{eqnarray*}



Now we need to express the alternating series $\sum_{n=1}^{\infty }\frac{
(-1)^{n-1}}{n^{4}}$ in terms of $\sum_{n=1}^{\infty }\frac{1}{n^{4}}$, e.g.
as follows



\begin{eqnarray*}

\sum_{n=1}^{\infty }\frac{\left( -1\right) ^{n-1}}{n^{4}} &=&\sum_{n=1}^{
\infty }\frac{1}{n^{4}}-2\sum_{n=1}^{\infty }\frac{1}{(2n)^{4}}
=\sum_{n=1}^{\infty }\frac{1}{n^{4}}-\frac{1}{2^{3}}\sum_{n=1}^{\infty }
\frac{1}{n^{4}}=\frac{7}{8}\sum_{n=1}^{\infty }\frac{1}{n^{4}}.
\end{eqnarray*}



Then



\begin{eqnarray*}
\frac{3\pi ^{4}}{4} &=&\pi ^{4}-12\sum_{n=1}^{\infty }\frac{1}{n^{4}}-\frac{

21}{2}\sum_{n=1}^{\infty }\frac{1}{n^{4}} \\
&=&\pi ^{4}-\frac{45}{2}\sum_{n=1}^{\infty }\frac{1}{n^{4}}.
\end{eqnarray*}



Solving for $\sum_{n=1}^{\infty }\frac{1}{n^{4}}$ we finally obtain



\begin{equation*}
\sum_{n=1}^{\infty }\frac{1}{n^{4}}=\frac{2}{45}\left( \pi ^{4}-\frac{3\pi
^{4}}{4}\right) =\frac{\pi ^{4}}{90}.
\end{equation*}



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...