Tuesday, 11 July 2017

calculus - Evaluate $sum_{n=1}^infty frac{n}{2^n}$.





Evaluate $$\sum_{n=1}^\infty \frac{n}{2^n}$$




My Work:



$$\sum_{n=1}^\infty \frac{n}{2^n} = \sum_{n=1}^\infty n \left(\frac{1}{2}\right)^n$$



If we denote $f(x) = \sum_{n=1}^\infty nx^n$ then we wish to evaluate $f(1/2)$.




Now, $$\sum_{n=1}^\infty nx^n = x \sum_{n=1}^\infty nx^{n-1} = x\sum_{n=1}^\infty (x^n)' = x\left(\sum_{n=1}^\infty x^n\right)' = x \left(\frac{-x}{1-x}\right)' = \frac{-x}{(1-x)^2}$$



Applying $x=1/2$ we get the wrong result of $-2$.



Where is my mistake?


Answer



The mistake was in the fourth step -- the $-x$ in $\left(\frac{-x}{1 - x}\right)^{'}$ should be $x$. So you should have



$$\sum_{n = 1}^\infty nx^n = \frac{x}{(1 - x)^2}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...