Thursday, 24 August 2017

Calculate the limit of the sequence $lim_{nrightarrowinfty} a_n, ngeqslant1 $



Calculate the limit of the sequence




$$\lim_{n\rightarrow\infty}\ a_n, n\geqslant1 $$



knowing that



$$\ a_n = \frac{3^n}{n!},n\geqslant1$$



Choose the right answer:



a) $1$




b) $0$



c) $3$



d) $\frac{1}{3}$



e) $2$



f) $\frac{1}{2}$


Answer




Using D'Alambert's criterion, we can see that



$$ \lim_{n \to \infty}\frac{a_{n+1}}{a_n}=\lim_{n \to \infty} \frac{3^{n+1}n!}{3^{n}(n+1)!}= \lim_{n \to \infty} \frac{3}{n+1}=0$$



Thus, $\lim\limits_{n \to \infty} a_n =0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...