Calculate the limit of the sequence
$$\lim_{n\rightarrow\infty}\ a_n, n\geqslant1 $$
knowing that
$$\ a_n = \frac{3^n}{n!},n\geqslant1$$
Choose the right answer:
a) $1$
b) $0$
c) $3$
d) $\frac{1}{3}$
e) $2$
f) $\frac{1}{2}$
Answer
Using D'Alambert's criterion, we can see that
$$ \lim_{n \to \infty}\frac{a_{n+1}}{a_n}=\lim_{n \to \infty} \frac{3^{n+1}n!}{3^{n}(n+1)!}= \lim_{n \to \infty} \frac{3}{n+1}=0$$
Thus, $\lim\limits_{n \to \infty} a_n =0$.
No comments:
Post a Comment