Sunday, 20 August 2017

calculus - Limit Proof Question

How to prove $\lim_{n\to\infty}\frac{f(x)}{g(x)} = \frac{\lim_{n\to\infty} f(x)}{\lim_{n\to\infty}g(x)}=\frac{L}{M}$ if g(x) is not equal to 0 using $\epsilon-\delta$ definition. I know the proof that uses the idea of $\frac{1}{g(x)}$ and the uses multiplication rule of limit, but I am wondering if there is a direct and more elegant proof.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...