Monday 28 August 2017

calculus - Compute this limit $lim_{xto0}frac{sin(x^2+frac{1}{x})-sinfrac{1}{x}}{x}$ using L'Hôpital's rule



I have asked this problem before, but I can't understand the explanation, I couldn't understand how the sin multiply for cos, and too multiply for A + and - B: $$\sin(A)-\sin(B)=2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)$$ and I don't understand in this step how/why the $A-B$ and $A+B$ was replaced by $\frac{x^2}{2}$ and $\frac{x^2}{2}+\frac{1}{x}$ :

$$\lim_{x\to0}\frac{\sin\left(x^2+\frac1x\right)-\sin\left(\frac1x\right)}{x}= \lim_{x\to0}\frac{2\sin\left(\frac{x^2}{2}\right)\cos\left(\frac{x^2}{2}+\frac1x\right)}{x}.$$


Answer



Hint:its easy to prove $$\sin(x+y)+\sin(x-y)=2\sin(x)\cos(y)$$
then put $y=\frac{A+B}{2}$,$x=\frac{A-B}{2}$
$$ \sin(x)\sim x$$ $$\ cosx\sim1-\frac{x^2}{2}$$ because $$\lim_{x\to0}\frac{sinx}{x}=\lim_{x\to0}\frac{cosx}{1-\frac{x^2}{2}}=1$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...