Could someone help me through this problem?
Calculate $\displaystyle\lim_{n \to{+}\infty}{(\sqrt{n^{2}+n}-n)}$
Answer
We have:
$$\sqrt{n^{2}+n}-n=\frac{(\sqrt{n^{2}+n}-n)(\sqrt{n^{2}+n}+n)}{\sqrt{n^{2}+n}+n}=\frac{n}{\sqrt{n^{2}+n}+n}$$
Therefore:
$$\sqrt{n^{2}+n}-n=\frac{1}{\sqrt{1+\frac{1}{n}}+1}$$
And since: $\lim\limits_{n\to +\infty}\frac{1}{n}=0$
It follows that:
$$\boxed{\,\,\lim\limits_{n\to +\infty}(\sqrt{n^{2}+n}-n)=\dfrac{1}{2}\,\,}$$
No comments:
Post a Comment