How can I show that $n^2
Step 1
For $n=1$, the LHS=$4^2=16$ and RHS=$4!=24$. So LHS$<$ RHS.
Step 2
Suppose the result be true for $n=k$ i.e.,
$k^2
Step 3
For $n=k+1$
$(k+1)^2=k^2+2k+1$
What will be the next step?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment