Monday, 14 August 2017

inequality - Prove by induction that $n^2

How can I show that $n^2 for all $n\geq 4$



Step 1



For $n=1$, the LHS=$4^2=16$ and RHS=$4!=24$. So LHS$<$ RHS.



Step 2




Suppose the result be true for $n=k$ i.e.,
$k^2



Step 3



For $n=k+1$
$(k+1)^2=k^2+2k+1$



What will be the next step?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...