Sunday, 13 August 2017

linear algebra - To find eigenvalues of matrix with all same element




How many distinct eigenvalues are there in the matrix.



$$
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\

1 & 1 & 1 & 1 \\
\end{bmatrix}
$$



I was wondering that is there any specific eigenvalues for matrices like this??



I hope I wouldn't have to find the determinant of this 4×4 matrix.


Answer



Note that $$\left(\begin{matrix}1&1&1&1\\ 1&1&1&1\\ 1&1&1&1\\ 1&1&1&1\end{matrix}\right)\left(\begin{matrix} a\\ b\\ c\\ d\end{matrix}\right)=\left(\begin{matrix} a+b+c+d\\ a+b+c+d\\ a+b+c+d\\ a+b+c+d\end{matrix}\right)$$
If $a=b=c=d$, then $$\left(\begin{matrix}1&1&1&1\\ 1&1&1&1\\ 1&1&1&1\\ 1&1&1&1\end{matrix}\right)\left(\begin{matrix} a\\ a\\ a\\ a\end{matrix}\right)=4\left(\begin{matrix} a\\ a\\ a\\ a\end{matrix}\right)$$

Hence $4$ is an eigenvalue.



Also see that since all the columns of the matrix are same, the rank of the matrix is $1$. So $4$ is the only non zero eigenvalue. $0$ is the other eigenvalue, with eigenvector, for example $(a~-a~a~-a)^t$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...