Inspired by answers to this question, for which n values could we specify a closed-form of
S(n)=∞∑k=1(ψ1(k))n?
Here ψ1 is the trigamma function, and n≥2 is an integer.
I think for small n values there is a closed-form. From the answers above we know that S(2)=3ζ(3). I think there is a generalization of Olivier Oloa's approach using techniques from Pedro Freitas' paper. Note that there is a known error in the paper. Furthermore I think robjohn's answer has a generalization using results from the paper by Philippe Flajolet and Bruno Salvy.
Question. Is there a closed-form of S(n) for 2≤n≤7?
Answer
Using
ψ1(n)=∑k≥n1k2,
write
S(3)=∑k≥1∑i,j,l≥k1i2j2l2.
The sum over i,j,l≥k decomposes into the sums
{i=j=l≥k}+3{i=j,l≥k;i≠l}+{i,j,l≥k;i≠j,i≠l,j≠l}.
Hence
S(3)=∑i≥k≥11i6+3∑i≥k,j≥k,i≠j1i4j2+∑i,j,l≥k,i≠j,j≠l,i≠l1i2j2l2.
Doing the sum over k first, and reordering the summation appropriately gives
S(3)=∑i≥11i5+3∑i>l≥11i4l+3∑i>l≥11i2l3+6∑i>j>l≥11i2j2l=ζ(5)+3ζ(4,1)+3ζ(2,3)+6ζ(2,2,1)
in terms of the multivariate zeta function.
Simplifying, this analysis gives:
S(2)=3ζ(3).
S(3)=9ζ(3)ζ(2)−252ζ(5).
S(4)=10ζ(5)ζ(2)+51ζ(3)ζ(4)−3014ζ(7)
S(5)=−15054ζ(7)ζ(2)+1252ζ(5)ζ(4)+8354ζ(3)ζ(6)+1179136ζ(9)−10ζ(3)3.
Here I found S(4) and S(5) numerically without proof. For S(m) for m≥6 there is probably no closed form except in terms of irreducible multivariate zeta values.
For example, if you allow closed forms in terms of double Euler sums, then
S(6)=820230901ζ(3)sh(2,6)+192901sh(8,3)+10901sh(9,2)−19535092703ζ(9)ζ(2)−762298901ζ(3)3ζ(2)−194873737208ζ(7)ζ(4)+4845534ζ(5)ζ(6)−89771651272ζ(3)ζ(8)+1790142901ζ(3)2ζ(5)+121888993604ζ(11)
S(7)=61439221007ζ(3)ζ(2)sh(2,6)+293612772014ζ(5)sh(2,6)−26961007ζ(3)sh(7,3)+31381007ζ(3)sh(8,2)+2731007ζ(2)sh(8,3)−841007ζ(2)sh(9,2)+10469781007sh(5,8)−8058941007sh(6,7)−17963981007sh(7,6)−15309971007sh(8,5)−7209641007sh(9,4)−1440691007sh(10,3)+121007sh(11,2)−45255361007ζ(11)ζ(2)−110962552014ζ(3)2ζ(5)ζ(2)−141734952014ζ(9)ζ(4)−199523651007ζ(3)3ζ(4)+8234835152ζ(7)ζ(6)+3398263752544ζ(5)ζ(8)−900623762532224ζ(3)ζ(10)+153022001007ζ(3)ζ(5)2+425336152014ζ(13)−390445831007ζ(3)2ζ(7)
No comments:
Post a Comment