Friday, 8 June 2018

calculus - Closed-form of suminftyk=1left(psi1(k)right)n




Inspired by answers to this question, for which n values could we specify a closed-form of



S(n)=k=1(ψ1(k))n?



Here ψ1 is the trigamma function, and n2 is an integer.



I think for small n values there is a closed-form. From the answers above we know that S(2)=3ζ(3). I think there is a generalization of Olivier Oloa's approach using techniques from Pedro Freitas' paper. Note that there is a known error in the paper. Furthermore I think robjohn's answer has a generalization using results from the paper by Philippe Flajolet and Bruno Salvy.



Question. Is there a closed-form of S(n) for 2n7?



Answer



Using
ψ1(n)=kn1k2,
write
S(3)=k1i,j,lk1i2j2l2.
The sum over i,j,lk decomposes into the sums
{i=j=lk}+3{i=j,lk;il}+{i,j,lk;ij,il,jl}.
Hence
S(3)=ik11i6+3ik,jk,ij1i4j2+i,j,lk,ij,jl,il1i2j2l2.
Doing the sum over k first, and reordering the summation appropriately gives

S(3)=i11i5+3i>l11i4l+3i>l11i2l3+6i>j>l11i2j2l=ζ(5)+3ζ(4,1)+3ζ(2,3)+6ζ(2,2,1)
in terms of the multivariate zeta function.



Simplifying, this analysis gives:
S(2)=3ζ(3).
S(3)=9ζ(3)ζ(2)252ζ(5).
S(4)=10ζ(5)ζ(2)+51ζ(3)ζ(4)3014ζ(7)

S(5)=15054ζ(7)ζ(2)+1252ζ(5)ζ(4)+8354ζ(3)ζ(6)+1179136ζ(9)10ζ(3)3.
Here I found S(4) and S(5) numerically without proof. For S(m) for m6 there is probably no closed form except in terms of irreducible multivariate zeta values.



For example, if you allow closed forms in terms of double Euler sums, then
S(6)=820230901ζ(3)sh(2,6)+192901sh(8,3)+10901sh(9,2)19535092703ζ(9)ζ(2)762298901ζ(3)3ζ(2)194873737208ζ(7)ζ(4)+4845534ζ(5)ζ(6)89771651272ζ(3)ζ(8)+1790142901ζ(3)2ζ(5)+121888993604ζ(11)
S(7)=61439221007ζ(3)ζ(2)sh(2,6)+293612772014ζ(5)sh(2,6)26961007ζ(3)sh(7,3)+31381007ζ(3)sh(8,2)+2731007ζ(2)sh(8,3)841007ζ(2)sh(9,2)+10469781007sh(5,8)8058941007sh(6,7)17963981007sh(7,6)15309971007sh(8,5)7209641007sh(9,4)1440691007sh(10,3)+121007sh(11,2)45255361007ζ(11)ζ(2)110962552014ζ(3)2ζ(5)ζ(2)141734952014ζ(9)ζ(4)199523651007ζ(3)3ζ(4)+8234835152ζ(7)ζ(6)+3398263752544ζ(5)ζ(8)900623762532224ζ(3)ζ(10)+153022001007ζ(3)ζ(5)2+425336152014ζ(13)390445831007ζ(3)2ζ(7)


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...