Saturday, 30 June 2018

modular arithmetic - How to calculate $5^{2003}$ mod $13$


How to calculate $5^{2003}$ mod $13$





using fermats little theorem



5^13-1 1 mod 13



(5^12)^166+11 mod 13



a+b modn=(a modn + b modn) modn




(1+11mod13)mod13



12 mod 13 = 12



why answer is 8 ?



how do we calculate this



thanks

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...