Most of us who are studying mathematics are familiar with the famous $e^{ix}=cos(x)+isin(x)$. Why is it that we have $e^{ix}=cos(x)+isin(x)$ and not $e^{ix}=sin(x)+icos(x)$? I haven't studied Complex Analysis to know the answer to this question. It pops up in Linear Algebra, Differential Equations, Multivariable Equations and many other fields. But I feel like textbooks and teachers just expect us students to take it as given without explaining it to a certain extent. I also couldn't find any good article that explains this.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment