Solving a probability problem I came across this integral:
12π∫∞−∞∫∞−∞etuve−u2/2e−v2/2 du dv
Can you explain how to integrate this?
Answer
Hint. Assume $-1
∫∞−∞etuve−u2/2 du=√2πet2v2/2 then with respect to v,
∫∞−∞et2v2/2e−v2/2 dv=∫∞−∞e−(1−t2)v2/2 dv=√2π√1−t2 obtaining
12π∫∞−∞∫∞−∞etuve−u2/2e−v2/2 du dv=1√1−t2.
No comments:
Post a Comment