Monday 18 June 2018

calculus - Evaluating $ dfrac{1}{2 pi} int_{-infty}^infty int_{-infty}^infty e^{tuv} e^{-u^2/2} e^{-v^2/2} du dv $



Solving a probability problem I came across this integral:




$$ \dfrac{1}{2 \pi} \int_{-\infty}^\infty \int_{-\infty}^\infty e^{tuv} e^{-u^2/2} e^{-v^2/2}\ du\ dv $$





Can you explain how to integrate this?


Answer



Hint. Assume $-1gaussian result,
$$
\int_{-\infty}^\infty e^{tuv} e^{-u^2/2} \ du=\sqrt{2\pi} \:e^{t^2v^2/2}
$$ then with respect to $v$,
$$
\int_{-\infty}^\infty e^{t^2v^2/2} e^{-v^2/2} \ dv=\int_{-\infty}^\infty e^{-(1-t^2)v^2/2} \ dv=\frac{\sqrt{2\pi}}{\sqrt{1-t^2}}

$$ obtaining




$$
\dfrac{1}{2 \pi} \int_{-\infty}^\infty \int_{-\infty}^\infty e^{tuv} e^{-u^2/2} e^{-v^2/2}\ du\ dv=\frac1{\sqrt{1-t^2}}.
$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...