Solving a probability problem I came across this integral:
$$ \dfrac{1}{2 \pi} \int_{-\infty}^\infty \int_{-\infty}^\infty e^{tuv} e^{-u^2/2} e^{-v^2/2}\ du\ dv $$
Can you explain how to integrate this?
Answer
Hint. Assume $-1
$$
\int_{-\infty}^\infty e^{tuv} e^{-u^2/2} \ du=\sqrt{2\pi} \:e^{t^2v^2/2}
$$ then with respect to $v$,
$$
\int_{-\infty}^\infty e^{t^2v^2/2} e^{-v^2/2} \ dv=\int_{-\infty}^\infty e^{-(1-t^2)v^2/2} \ dv=\frac{\sqrt{2\pi}}{\sqrt{1-t^2}}
$$ obtaining
$$
\dfrac{1}{2 \pi} \int_{-\infty}^\infty \int_{-\infty}^\infty e^{tuv} e^{-u^2/2} e^{-v^2/2}\ du\ dv=\frac1{\sqrt{1-t^2}}.
$$
No comments:
Post a Comment