Thursday, 7 June 2018

number theory - Period of the sequence $1^1,2^2,3^3, cdots$, considered (mod $p$)




Show that the sequence $1^1,2^2,3^3, \cdots$, considered (mod $p$) is periodic with least period $p(p-1)$.





I came across this solution:




https://math.stackexchange.com/a/1894375/697936




The one thing that I am not unable to understand here is :
$k^k k^{p-1} \equiv k^k$.




My claim: If $(k,p)=1$ then from Fermat's Little Theorem we have $k^{p-1}\equiv 1 \pmod{p}$ then $(k^{p-1})^p \equiv 1 \pmod{p}$. And so this $k^k k^{(p-1)p} \equiv k^k\pmod{p}$ holds.




But what happens if $(k,p) \neq 1$?




Can someone please explain this.
Thanks in advance.


Answer




If $(k,p)\neq1$ then $(k,p)=p$ and hence $k\equiv0\pmod{p}$. So
$$k^kk^{p-1}\equiv0\pmod{p}\qquad\text{ and }\qquad k^k\equiv0\pmod{p}.$$






Another way to see that $k^kk^{p-1}\equiv k^k\pmod{p}$ is to phrase Fermat's little theorem as
$$\forall k:\ k^p\equiv k\pmod{p}.$$
Then multiplying both sides by $k^{k-1}$ yields the desired identity.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...