Avoiding too many steps, which is the characteristic polynomial of this matrix 7x7? And why?
\begin{pmatrix}
5&5&5&5&5&5&5\\5&5&5&5&5&5&5\\5&5&5&5&5&5&5\\5&5&5&5&5&5&5\\5&5&5&5&5&5&5\\5&5&5&5&5&5&5\\5&5&5&5&5&5&5\end{pmatrix}
Answer
As it was stated in the commentaries, the rank of this matrix is $1$; so it will have $6$ null eigenvalues, which means the characteristic polynomial will be in the form:
$p(\lambda)=\alpha\,\lambda^6(\lambda-\beta) = \gamma_6\,\lambda^6 +\gamma_7\,\lambda^7$
Using Cayley-Hamilton:
$p(A)=\gamma_6\,A^6+\gamma_7\,A^7 =0$
Any power of this matrix will have the same format, a positive value for all elements.
$B=\begin{bmatrix}1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\end{bmatrix}$
$A = 5\,B$
$A^2 = 5^2\,7\,B$
$...$
$A^6 = 5^6\,7^5\,B$
$A^7=5^7\,7^6\,B$
$p(A) = (\gamma_6+35\,\gamma_7)\,B=0\Rightarrow\gamma_6=-35\gamma_7$
So we have: $\alpha=\gamma_7$ and $\beta = 35$
$p(\lambda)=\alpha\,\lambda^6(\lambda-35)$
No comments:
Post a Comment