Tuesday, 12 June 2018

elementary number theory - Extended Euclidean Algorithm As Row Operations

I am trying to find $\gcd (211,88)$ and $\gcd (-26400,63300)$ and the smallest linear combination that gives the Greatest Common Divisor (a.k.a. $\gcd$) .



I have been using the following algorithm



For $gcd(211,88)$ I got:




$$211=1(211)+0(88)\\88=0(211)+1(88)\\35=1(211)-2(88)\\18=-2(211)+5(88)\\17=3(211)-7(88)\\1=-5(211)+12(88)\\ 0=88(211)-211(88)$$



And the operations were:
$R_1-2R_2 , R_2-2R_3,R_3-R_4,R_4-R_5,R_5-17R_6$



What is the $\gcd$ ? the one before $0?$



In the case of $\gcd(-26400,63300)$ or in the case that we have one or two negative numbers, how do we use the algorithm?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...