Sum of the series
410+4⋅710⋅20+4⋅7⋅1010⋅20⋅30+⋯
Sum of series 410+4⋅710⋅20+4⋅7⋅1010⋅20⋅30+⋯
But i want to solve it using Beta ganmma function.
My Process follows
Let S=110[41+4⋅71⋅2+4⋅7⋅101⋅2⋅3+⋯⋯]
Let an=n∏k=1(3k+1)=3nn∏k=1(k+13)
=3nΓ(n+43)⋅1Γ(43)
And Let bn=n∏k=1k=Γ(n+1)
So S=110∞∑n=13nΓ(n+43)⋅Γ(23)Γ(23)Γ(43)⋅Γ(n+1)
using Γ(x)⋅Γ(1−x)=πsin(πx) and
Γ(a)Γ(b)Γ(a+b)=B(a,b)=∫10xa−1(1−x)b−1dx
So S=110∞∑n=13n∫10xn+13(1−x)−13dx
=110∫103x1−3x⋅(x1−x)13dx
Now put x1−x=t⇒x=t1+t=1−11+t
So S=310∫∞0t43(2t−1)(1+t)2dt
Could some Help me to solve it, Thanks
although it has solved Here
Answer
For a complex number z such that |z|<1, let
f(z):=∞∑n=0n∏k=1(k+13k)zn.
Then, the required sum S:=∞∑n=1n∏k=1(3k+110k) satisfies
S=f(310)−1.
We claim that f(z)=(1−z)−43 for all complex numbers z such that |z|<1. As a consequence,
S=(710)−43−1=(107)43−1≈0.608926.
Note that, for n=0,1,2,3,…,
tn:=n∏k=1(k+13k)=Γ(n+43)Γ(43)Γ(n+1)=(n+1)Γ(n+43)Γ(43)Γ(n+2),
where Γ is the usual gamma function.
That is,
tn=n+1Γ(43)Γ(23)B(n+43,23),
where B is the usual beta function.
From the identity
Γ(x)Γ(1−x)=πsin(πx),
we conclude that
Γ(43)Γ(−13)=πsin(4π3)=−2π√3.
Ergo,
Γ(43)Γ(23)=(−13)(−2π√3)=2π3√3.
In other words,
tn=3√32π(n+1)∫10un+13(1−u)−13du.
We now obtain
f(z)=3√32π∫10(∞∑n=0(n+1)un+13zn)(1−u)−13du.
This gives
f(z)=3√32π∫10u13(1−u)−13(1−zu)2du.
Let v:=u1−u. Then,
f(z)=3√32π∫∞0v13(1+(1−z)v)2dv.
The integral
J:=∫∞0v13(1+(1−z)v)2dv
can be evaluated using the same keyhole contour as in this thread. It is not difficult to see that
J=(2πi1−exp(2πi3))Resv=−11−z(v13(1+(1−z)v)2)=−πexp(−πi3)sin(π3)(−exp(πi3)3(1−z)−43)=2π3√3(1−z)−43.
That is,
f(z)=(1−z)−43 for all z∈C such that |z|<1.
Well, the OP requested a long and combersome solution. The result can be easily proven via the binomial theorem:
(1−z)−43=∞∑n=0(−43n)(−1)nzn=∞∑n=0n∏k=1(k+13k)zn
for every complex number z with |z|<1.
No comments:
Post a Comment