Saturday, 2 June 2018

gamma function - Sum of series frac410+frac4cdot710cdot20+frac4cdot7cdot1010cdot20cdot30+cdotscdots





Sum of the series



410+471020+4710102030+




Sum of series 410+471020+4710102030+



But i want to solve it using Beta ganmma function.




My Process follows



Let S=110[41+4712+4710123+]



Let an=nk=1(3k+1)=3nnk=1(k+13)



=3nΓ(n+43)1Γ(43)



And Let bn=nk=1k=Γ(n+1)




So S=110n=13nΓ(n+43)Γ(23)Γ(23)Γ(43)Γ(n+1)



using Γ(x)Γ(1x)=πsin(πx) and



Γ(a)Γ(b)Γ(a+b)=B(a,b)=10xa1(1x)b1dx



So S=110n=13n10xn+13(1x)13dx



=110103x13x(x1x)13dx




Now put x1x=tx=t1+t=111+t



So S=3100t43(2t1)(1+t)2dt



Could some Help me to solve it, Thanks



although it has solved Here


Answer



For a complex number z such that |z|<1, let
f(z):=n=0nk=1(k+13k)zn.

Then, the required sum S:=n=1nk=1(3k+110k) satisfies
S=f(310)1.
We claim that f(z)=(1z)43 for all complex numbers z such that |z|<1. As a consequence,
S=(710)431=(107)4310.608926.



Note that, for n=0,1,2,3,,
tn:=nk=1(k+13k)=Γ(n+43)Γ(43)Γ(n+1)=(n+1)Γ(n+43)Γ(43)Γ(n+2),
where Γ is the usual gamma function.
That is,
tn=n+1Γ(43)Γ(23)B(n+43,23),

where B is the usual beta function.
From the identity
Γ(x)Γ(1x)=πsin(πx),
we conclude that
Γ(43)Γ(13)=πsin(4π3)=2π3.
Ergo,
Γ(43)Γ(23)=(13)(2π3)=2π33.
In other words,
tn=332π(n+1)10un+13(1u)13du.




We now obtain
f(z)=332π10(n=0(n+1)un+13zn)(1u)13du.
This gives
f(z)=332π10u13(1u)13(1zu)2du.
Let v:=u1u. Then,
f(z)=332π0v13(1+(1z)v)2dv.



The integral
J:=0v13(1+(1z)v)2dv
can be evaluated using the same keyhole contour as in this thread. It is not difficult to see that

J=(2πi1exp(2πi3))Resv=11z(v13(1+(1z)v)2)=πexp(πi3)sin(π3)(exp(πi3)3(1z)43)=2π33(1z)43.
That is,
f(z)=(1z)43 for all zC such that |z|<1.



Well, the OP requested a long and combersome solution. The result can be easily proven via the binomial theorem:
(1z)43=n=0(43n)(1)nzn=n=0nk=1(k+13k)zn
for every complex number z with |z|<1.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...