In the CLRS book, there's this part, where it's shown that $$\lim_{n\to\infty}\frac{(n^b)}{(a^n)} = 0.$$ In the same chapter, it uses the aforementioned equation to prove that any logarithmic function grows slower than any polynomial one, thus, $$\lim_{n\to\infty}\frac{\log b^n}{ n^a}$$. It does that by substituting lgn
for n
and 2^a
for a
in the first equation. How is it allowed to substitute the terms and prove the latter equation.
Saturday, 16 June 2018
limits - Polylogarithm grows slower than polynomial proof
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment