Thursday, 21 June 2018

sequences and series - How to find the limit limlimitsntoinftyprodlimitsnj=1left(1+frac1jleft(cosleft(fractjnright)1right)right)?





limnnj=1(1+1j(cos(tjn)1))




I am unsure how to find this limit. Are there some general techniques that I should be using when looking for the limit? I know that I should get :
exp(10cos(tx)xxdx).


Answer



Put an:=nj=1(1+1j(cos(tjn)1)). Then
bn:=lnan=nj=1ln(1+1j(cos(tjn)1)).


Using the inequality xx22ln(1+x)x for x>1, we get

nj=11j(cos(tjn)1)12nj=11j2(cos(tjn)1)2bnnj=11j(cos(tjn)1).

Put cn:=nj=11j(cos(tjn)1). Then
cn=1nnj=1nj(cos(tjn)1)=1nnk=1f(kn),

with f(x)=cos(tx)1x, which can be extended by continuity to [0,1]. Hence we get limncn=10f(x)dx=10cos(tx)1xdx.
Now, since
nj=11j2(cos(tjn)1)2=1n2nj=1n2j2(cos(tjn)1)2

is 1n times a Riemann sum of a continuous function (after extension), it's limit n is 0, and we conclude by the squeeze theorem.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...