Wednesday, 27 June 2018

calculus - Prove $sin a=int_{-infty}^{infty}cos(ax^2)frac{sinh(2ax)}{sinh(pi x)} operatorname dx$

Derive the integral representation




$$\sin a=\int_{-\infty}^{\infty}\cos(ax^2)\frac{\sinh(2ax)}{\sinh(\pi x)}dx$$
for $|a|\le \pi/2$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...