Sunday, 21 July 2019

calculus - Calculating $lim_{xto0} leftlfloorfrac{x^2}{sin x tan x}rightrfloor$


Find $$\lim_{x\to0} \left\lfloor\frac{x^2}{\sin x \tan x}\right\rfloor$$ where $\lfloor\cdot\rfloor$ is greatest integer function




I am a high school teacher. One of my students came up to ask this limit.
For $\lfloor\frac{\sin x}{x}\rfloor$, I have used $\sin x > x$ using increasing decreasing functions.




I tried to prove $x^2 > \sin x \tan x$ using increasing /decreasing
function but I am not getting it.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...