Friday, 12 July 2019

integration - solving $intfrac{2x^3}{x^2+1} , dx$





$$\int\frac{2x^3}{x^2+1} \, dx$$





$$u=x^2$$



$$du=2x \, dx$$



$$\int \frac{u}{u+1} \, du$$$$=\int \frac{u+1-1}{u+1}du$$$$=\int 1-\frac{1}{u+1} \, du$$



how should I continue? is there an algotherm for integrating rational functions?


Answer



Notice, here is another simple method, $$\int \frac{2x^3}{x^2+1}\ dx$$

$$\int \frac{2x^3+2x-2x}{x^2+1}\ dx$$
$$=\int \frac{2x(x^2+1)-2x}{x^2+1}\ dx$$
$$=\int 2x\ dx-\int \frac{2x}{x^2+1}\ dx$$
$$=2\int x\ dx-\int \frac{d(x^2+1)}{x^2+1}$$
$$=\color{red}{x^2-\ln(x^2+1)+C}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...