Tuesday, 23 July 2019

calculus - How do I take the limit as n goes to infty of fracsqrtnlog(n)?



How do take this limit:



lim



I have a feeling that it is infinity, but I'm not sure how to prove it. Should I use L'Hopitals Rule?


Answer



Let n = e^x. Note that as n \rightarrow \infty, we also have x \rightarrow \infty. Hence, \lim_{n \rightarrow \infty} \frac{\sqrt{n}}{\log(n)} = \lim_{x \rightarrow \infty} \frac{\exp(x/2)}{x}
Note that \displaystyle \exp(y) > \frac{y^2}{2}, \forall y > 0 (Why?). Hence, we have that \lim_{n \rightarrow \infty} \frac{\sqrt{n}}{\log(n)} = \lim_{x \rightarrow \infty} \frac{\exp(x/2)}{x} \geq \lim_{x \rightarrow \infty} \frac{\frac{x^2}{8}}{x} = \lim_{x \rightarrow \infty} \frac{x}{8} = \infty



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...