How do take this limit:
lim
I have a feeling that it is infinity, but I'm not sure how to prove it. Should I use L'Hopitals Rule?
Answer
Let n = e^x. Note that as n \rightarrow \infty, we also have x \rightarrow \infty. Hence, \lim_{n \rightarrow \infty} \frac{\sqrt{n}}{\log(n)} = \lim_{x \rightarrow \infty} \frac{\exp(x/2)}{x}
Note that \displaystyle \exp(y) > \frac{y^2}{2}, \forall y > 0 (Why?). Hence, we have that \lim_{n \rightarrow \infty} \frac{\sqrt{n}}{\log(n)} = \lim_{x \rightarrow \infty} \frac{\exp(x/2)}{x} \geq \lim_{x \rightarrow \infty} \frac{\frac{x^2}{8}}{x} = \lim_{x \rightarrow \infty} \frac{x}{8} = \infty
No comments:
Post a Comment