I was trying to evaluate $\displaystyle \int_0^{\frac{\pi}{6}}\ln^2\left(2\sin x\right)\,dx$ in an elementary way (no complex variable) so i have considered:
$\displaystyle \int_0^{\frac{\pi}{6}} \ln^2\left(\frac{\sin x}{\sin\left(\frac{\pi}{6}-x\right)}\right)\,dx$.
Using lindep a function in PARI GP i have conjectured that this integral is equal to a rational times $\pi^3$*.
Then i have considered:
$\displaystyle \frac{1}{\pi^5}\int_0^{\frac{\pi}{6}} \ln^4\left(\frac{\sin x}{\sin\left(\frac{\pi}{6}-x\right)}\right)\,dx,\frac{1}{\pi^7} \int_0^{\frac{\pi}{6}} \ln^6\left(\frac{\sin x}{\sin\left(\frac{\pi}{6}-x\right)}\right)\,dx$ and it seems that these integrals are rational numbers.
then i have considered:
$\displaystyle \frac{1}{\pi^5}\int_0^{\frac{\pi}{7}} \ln^4\left(\frac{\sin x}{\sin\left(\frac{\pi}{7}-x\right)}\right)\,dx,\frac{1}{\pi^7} \int_0^{\frac{\pi}{7}} \ln^6\left(\frac{\sin x}{\sin\left(\frac{\pi}{7}-x\right)}\right)\,dx$
same things happen.
Then i have considered:
$\displaystyle \frac{1}{\pi^3}\int_0^{\sqrt{2}} \ln^2\left(\frac{\sin x}{\sin\left(\sqrt{2}-x\right)}\right)\,dx$.
and lindep doesn't show that this number is rational. (it's not a proof).
i have tested much more values ($\frac{\pi}{7}+\frac{1}{10000}$ for example)
My question:
is it true that:
$0< \theta <\pi$, a real
for all $n$, natural integer
$\displaystyle \frac{1}{\pi^{2n+1}} \int_0^{\theta} \ln^{2n}\left(\frac{\sin x}{\sin\left(\theta-x\right)}\right)\,dx$ is a rational
if only if $\theta=r\pi$, $0< r<1$ a rational.
*: i think i have a proof for this.
PS:
The idea of this came after reading: Evaluation of $\int_0^{\pi/3} \ln^2\left(\frac{\sin x }{\sin (x+\pi/3)}\right)\,\mathrm{d}x$
No comments:
Post a Comment