Sunday, 14 July 2019

probability - Let $F_X(x):=P(Xleq x)$ a distribution function of a random variable $X$. Prove that $F_X$ is right-continuous.

Let $F_X(x):=P(X\leq x)$ a distribution function of a random variable $X$.



Prove that $F_X$ is right-continuous.



I need to show that for every non-increasing sequence $x_n$ with $\lim x_n=x$ I will get:



$$\lim_{n\to\infty}f(x_n)=f(x_0)$$




How do I show this ? Any ideas ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...