Wednesday, 3 July 2019

calculus - Finding vertical asymptotes



So I am trying to find the behaviour of this function around an asymptote at $x=0$.



$a>0$



$$y=\frac{(x-a)(x^2+a)}{x^2}$$



I know that as $x \to 0^+$, $y \to -\infty $ and $x \to 0^-$, $y \to -\infty $.




I've tried dividing the top and bottom of $y$ by $x^2$ and ended with:



$$x-a+\frac{a}{x}-\frac{a^2}{x^2}$$



Which does not help me as I end with $\infty -\infty$. Any help would be greatly appreciated.


Answer



Expanding my comment above.





I know that as $x \to 0^+$, $y \to -\infty $ and $x \to 0^-$, $y \to
-\infty $.




Only the first assertion is correct.



Since $\left( x-a\right) (x^{2}+a)=x^{3}-ax^{2}+ax-a^{2}$, we have
$$\begin{eqnarray*}
\lim_{x\rightarrow 0}\frac{\left( x-a\right) (x^{2}+a)}{x^{2}}
&=&\lim_{x\rightarrow 0}\left( x^{3}-ax^{2}+ax-a^{2}\right) \times

\lim_{x\rightarrow 0}\frac{1}{x^{2}} \\
&=&-a^{2}\times \lim_{x\rightarrow 0}\frac{1}{x^{2}}=-a^{2}\left( +\infty
\right) =-\infty, \qquad\text{ for }a\ne 0.
\end{eqnarray*}$$



So as $x$ approaches $0$, either from the left or from the right, $y\rightarrow -\infty $. The limit does not depend on the sign of $a$.



Plot of $y$ for $a=1$ (black) and $a=-1$ (green).



enter image description here



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...