Tuesday, 30 July 2019

calculus - What is the value of $lfloor{100N}rfloor$

What is the value of $\lfloor{100N}\rfloor$ where $\displaystyle N= \lim\limits_{a\,\rightarrow\,\infty}\sum\limits_{x=-a}^{a}\frac{\sin x}{x}$.



This is a part of a bigger problem that I was solving. I need the exact integer value of $\lfloor{100N}\rfloor$ .
I was only able to simplify $\displaystyle \lim\limits_{a\,\rightarrow\,\infty}\sum\limits_{x=-a}^{a}\frac{\sin x}{x}= 1+2\left(\lim\limits_{a\,\rightarrow\,\infty}\sum\limits_{x=1}^{a}\frac{\sin x}{x}\right)$. I don't know how to proceed further. Please help

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...