Thursday, 18 July 2019

combinatorics - Sum of infinite series suminftyn=50frac1binomn50




Find Sum of infinite series S=\sum_{n=50}^{\infty} \frac{1}{\binom{n}{50}} My Try is :



50S=\sum_{n=50}^{\infty} \frac{n-(n-50)}{\binom{n}{50}} so



50S=\sum_{n=50}^{\infty}\frac{n}{\binom{n}{50}}-\sum_{n=50}^{\infty}\frac{n-50}{\binom{n}{n-50}} so



50S=\sum_{n=50}^{\infty}\frac{n}{\binom{n}{50}}-\sum_{n=0}^{\infty}\frac{n}{{\binom{n+50}{50}}}



any clue further


Answer




Hint:



\frac{1}{\binom{n}{50}} = \frac{50}{49} \bigg( \frac{1}{\binom{n-1}{49}} - \frac{1}{\binom{n}{49}} \bigg).


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...