Thursday, 18 July 2019

combinatorics - Sum of infinite series $sum_{n=50}^{infty} frac{1}{binom{n}{50}}$




Find Sum of infinite series $$S=\sum_{n=50}^{\infty} \frac{1}{\binom{n}{50}}$$ My Try is :



$$50S=\sum_{n=50}^{\infty} \frac{n-(n-50)}{\binom{n}{50}}$$ so



$$50S=\sum_{n=50}^{\infty}\frac{n}{\binom{n}{50}}-\sum_{n=50}^{\infty}\frac{n-50}{\binom{n}{n-50}} $$ so



$$50S=\sum_{n=50}^{\infty}\frac{n}{\binom{n}{50}}-\sum_{n=0}^{\infty}\frac{n}{{\binom{n+50}{50}}}$$



any clue further


Answer




Hint:



$$ \frac{1}{\binom{n}{50}} = \frac{50}{49} \bigg( \frac{1}{\binom{n-1}{49}} - \frac{1}{\binom{n}{49}} \bigg). $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...