Find Sum of infinite series S=\sum_{n=50}^{\infty} \frac{1}{\binom{n}{50}} My Try is :
50S=\sum_{n=50}^{\infty} \frac{n-(n-50)}{\binom{n}{50}} so
50S=\sum_{n=50}^{\infty}\frac{n}{\binom{n}{50}}-\sum_{n=50}^{\infty}\frac{n-50}{\binom{n}{n-50}} so
50S=\sum_{n=50}^{\infty}\frac{n}{\binom{n}{50}}-\sum_{n=0}^{\infty}\frac{n}{{\binom{n+50}{50}}}
any clue further
Answer
Hint:
\frac{1}{\binom{n}{50}} = \frac{50}{49} \bigg( \frac{1}{\binom{n-1}{49}} - \frac{1}{\binom{n}{49}} \bigg).
No comments:
Post a Comment