The question is:
Let $\displaystyle \sum_{n=1}^{\infty}f_n(x)$ a series converges uniformly on $I$ to
$S(x)$. Prove that $\lim\limits_{n\to\infty}f_n(x)=0$.
My try: $\forall N\in\mathbb N$, we have $f_N(x)=\sum\limits_{n=1}^{N}f_n(x)-\sum\limits_{n=1}^{N-1}f_n(x)$, so the statement is proved if I prove that
$$f_n(x),g_n(x)\to f(x),g(x)\text{ uniformly on }J\implies\\ f_n(x)+g_n(x)\to f(x)+g(x) \text{ uniformly on }J.$$
On the one hand:
$$\begin{align*}
\lim_{n\to\infty}\sup_{x\in J}|f_n(x)-f(x)+g_n(x)-g(x)|\leq&\quad\text{(triangle inequality) }\\
\limsup\limits_{x\in J}{|f_n(x)-f(x)|+|g_n(x)-g(x)|}=0+0=0.
\end{align*}$$
Now I'm in trouble proving that $\limsup\limits_{x\in J}{|f_n(x)+g_n(x)-f(x)-g(x)|}\geq 0$. How can I do that ?
Answer
We know:
$\forall x\in J:|f_n(x)+g_n(x)-f(x)-g(x)|\ge0 $
then:
$\limsup\limits_{x\in J}{|f_n(x)+g_n(x)-f(x)-g(x)|}\ge0$
No comments:
Post a Comment