The question is:
Let ∞∑n=1fn(x) a series converges uniformly on I to
S(x). Prove that lim.
My try: \forall N\in\mathbb N, we have f_N(x)=\sum\limits_{n=1}^{N}f_n(x)-\sum\limits_{n=1}^{N-1}f_n(x), so the statement is proved if I prove that
f_n(x),g_n(x)\to f(x),g(x)\text{ uniformly on }J\implies\\ f_n(x)+g_n(x)\to f(x)+g(x) \text{ uniformly on }J.
On the one hand:
\begin{align*} \lim_{n\to\infty}\sup_{x\in J}|f_n(x)-f(x)+g_n(x)-g(x)|\leq&\quad\text{(triangle inequality) }\\ \limsup\limits_{x\in J}{|f_n(x)-f(x)|+|g_n(x)-g(x)|}=0+0=0. \end{align*}
Now I'm in trouble proving that \limsup\limits_{x\in J}{|f_n(x)+g_n(x)-f(x)-g(x)|}\geq 0. How can I do that ?
Answer
We know:
\forall x\in J:|f_n(x)+g_n(x)-f(x)-g(x)|\ge0
then:
\limsup\limits_{x\in J}{|f_n(x)+g_n(x)-f(x)-g(x)|}\ge0
No comments:
Post a Comment