Monday, 8 July 2019

trigonometry - Why is this derivative incorrect?




We have to find the derivative of $$f(x) = \dfrac{\tan(2x)}{\sin(x)}$$



I would like to know why my approach is incorrect:



$$f'(x) = \dfrac{\sin(x) \cdot \dfrac{2}{\cos^2(2x)} - \tan(2x) \cdot \cos(x)}{\sin^2(x)}$$



$$ = \dfrac{ 2 \sin(x) - \tan(2x) \cdot \cos(x)}{\cos^2(2x) \cdot \sin^2(x)}$$



$$ = \dfrac {2 \sin(x) - \sin(2x) \cdot \cos(x)}{\cos^3(2x) \cdot \sin^2(x)}$$




p.s. - To avoid confusion ; I wanted to get rid of the $\tan$. I'm sure there is a shorter method than this but I don't want it; I just want to know why this is wrong.


Answer



Third line is: $ \dfrac{ 2 \sin(x) - \tan(2x) \cdot \cos(x)\cdot\cos^2(2x)}{\cos^2(2x) \cdot \sin^2(x)}$
instead of $\\\\ \dfrac{ 2 \sin(x) - \tan(2x) \cdot \cos(x)}{\cos^2(2x) \cdot \sin^2(x)}$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...