Let $f$ a continuous function defined on $\mathbb R$ such that $\forall x,y \in \mathbb R :f(x+y)=f(x)+f(y)$
Prove that :
$$\exists a\in \mathbb R , \forall x \in \mathbb R, f(x)=ax$$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment