Monday, 11 November 2019

calculus - Differentiate $:textrm{ln}sqrt{textrm{ln}:x}$

I am confused about the solution and method of differentiating this function:



$$\frac{d}{dx}\:\textrm{ln}\sqrt{\textrm{ln}\:x}$$



Why is ln not considered a constant and then multiplied by the derivative of$\:\sqrt{\textrm{ln}\:x}$ ?



The solution is given as:



$$\left(\frac{1}{2x\:\textrm{ln}x}\right)$$
How exactly is the chain rule applied to the entire function at once?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...