Tuesday, 5 November 2019

calculus - Evaluation of limnrightarrowinftyleftleft(2+sqrt3right)2nright;, Where ninmathbbN.

Evaluation of limn{(2+3)2n}, Where nN.




MyTry:: Let (2+3)2n=I+f,

where $0

Now Let 0<(23)2n<1,

So (23)2n=f
.



So (2+3)2n+(23)2n=I+f+f=IntegerQuantity.



So f+fZ.

Now Given 0<(f+f)<2. So f+f=1Z



So I+f+f=IntegerQuantityf=IntegerQuantityf




So limn{(2+3)2n}=Integerquantitylimn{(23)2n}



Now how can i solve after that, help me, Thanks

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...