Tuesday, 5 November 2019

calculus - Evaluation of $lim_{nrightarrow infty}left{left(2+sqrt{3}right)^{2n}right};,$ Where $nin mathbb{N}.$

Evaluation of $\displaystyle \lim_{n\rightarrow \infty}\left\{\left(2+\sqrt{3}\right)^{2n}\right\}\;,$ Where $n\in \mathbb{N}.$




$\bf{My\; Try::}$ Let $$\left(2+\sqrt{3}\right)^{2n} = I +f\;,$$ where $0

Now Let $$0<\left(2-\sqrt{3}\right)^{2n}<1\;,$$ So $$\left(2-\sqrt{3}\right)^{2n}=f'$$.



So $$\left(2+\sqrt{3}\right)^{2n}+\left(2-\sqrt{3}\right)^{2n} = I +f+f' = \bf{Integer\; Quantity.}$$



So $$f+f'\in \mathbb{Z}.$$ Now Given $0<(f+f')<2$. So $f+f' = 1\in \mathbb{Z}$



So $$I+f+f' = \bf{Integer\; Quantity}\Rightarrow f = Integer\; Quantity-f'$$




So $$\displaystyle \lim_{n\rightarrow \infty}\left\{\left(2+\sqrt{3}\right)^{2n}\right\} = \bf{Integer\; quantity-}\displaystyle \lim_{n\rightarrow \infty}\left\{\left(2-\sqrt{3}\right)^{2n}\right\}$$



Now how can i solve after that, help me, Thanks

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...