Tuesday 19 November 2019

sequences and series - find the sum to n term of $frac{1}{1cdot2cdot3} + frac{3}{2cdot3cdot4} + frac{5}{3cdot4cdot5} + frac{7}{4cdot5cdot6 } + ... $



$$\frac{1}{1\cdot2\cdot3} + \frac{3}{2\cdot3\cdot4} + \frac{5}{3\cdot4\cdot5} + \frac{7}{4\cdot5\cdot6 } + ... $$



$$=\sum \limits_{k=1}^{n} \frac{2k-1}{k\cdot(k+1)\cdot(k+2)}$$ $$= \sum \limits_{k=1}^{n} - \frac{1}{2}\cdot k + \sum \limits_{k=1}^{n} \frac{3}{k+1} - \sum \limits_{k=1}^{n}\frac{5}{2\cdot(k+2)} $$



I do not know how to get a telescoping series from here to cancel terms.


Answer



HINT:




Note that we have



$$\begin{align}
\frac{2k-1}{k(k+1)(k+2)}&=\color{blue}{\frac{3}{k+1}}-\frac{5/2}{k+2}-\frac{1/2}{k}\\\\
&=\color{blue}{\frac12}\left(\color{blue}{\frac{1}{k+1}}-\frac1k\right)+\color{blue}{\frac52}\left(\color{blue}{\frac{1}{k+1}}-\frac{1}{k+2}\right)
\end{align}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...