Friday, 22 November 2019

summation - Why is sum of a sequence $displaystyle s_n = frac{n}{2}(a_1+a_n)$?

Is there a way to prove that the sum of the arithmetic progression $a_1, a_2, \dots, a_n$ can be calculated by $\displaystyle s_n = \frac{n}{2}(a_1+a_n)$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...