Sunday, 17 November 2019

summation - Sum of binomial coefficients when lower suffices is same in the series: mchoosem+m+1choosem+m+2choosem+...+nchoosem




I want to find out sum of the following series:

{m \choose m}+{m+1 \choose m}+{m+2 \choose m}+...+{n \choose m}
My try:
{m \choose m}+{m+1 \choose m}+{m+2 \choose m}+...+{n \choose m} = Coefficient of x^m in the expansion of (1+x)^m + (1+x)^{m+1} + ... + (1+x)^n

Or, Coefficient of x^m
\frac{(1+x)^{m}((1+x)^{n}-1)}{1+x-1}
=\frac{(1+x)^{m+n}-(1+x)^{m}}{x}
But, how to proceed further?



Note: m≤n


Answer



Other way

\left( \begin{matrix} k \\ m \\ \end{matrix} \right)=\left( \begin{matrix} k+1 \\ m+1 \\ \end{matrix} \right)-\left( \begin{matrix} k \\ m+1 \\ \end{matrix} \right)
we have
\sum\limits_{k=m}^{n}{\left( \begin{matrix} k \\ m \\ \end{matrix} \right)}=\sum\limits_{k=m}^{n}\left[{\left( \begin{matrix} k+1 \\ m+1 \\ \end{matrix} \right)-\left( \begin{matrix} k \\ m+1 \\ \end{matrix} \right)}\right]=\left( \begin{matrix} n+1 \\ m+1 \\ \end{matrix} \right)
Also



Let x_i\in \mathbb{N} and
x_1+x_2+x_3+\cdots+x_{k+2}=n+2



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...