I want to find out sum of the following series:
{m \choose m}+{m+1 \choose m}+{m+2 \choose m}+...+{n \choose m}
My try:
{m \choose m}+{m+1 \choose m}+{m+2 \choose m}+...+{n \choose m} = Coefficient of x^m in the expansion of (1+x)^m + (1+x)^{m+1} + ... + (1+x)^n
Or, Coefficient of x^m
\frac{(1+x)^{m}((1+x)^{n}-1)}{1+x-1}
=\frac{(1+x)^{m+n}-(1+x)^{m}}{x}
But, how to proceed further?
Note: m≤n
Answer
Other way
\left( \begin{matrix} k \\ m \\ \end{matrix} \right)=\left( \begin{matrix} k+1 \\ m+1 \\ \end{matrix} \right)-\left( \begin{matrix} k \\ m+1 \\ \end{matrix} \right)
we have
\sum\limits_{k=m}^{n}{\left( \begin{matrix} k \\ m \\ \end{matrix} \right)}=\sum\limits_{k=m}^{n}\left[{\left( \begin{matrix} k+1 \\ m+1 \\ \end{matrix} \right)-\left( \begin{matrix} k \\ m+1 \\ \end{matrix} \right)}\right]=\left( \begin{matrix} n+1 \\ m+1 \\ \end{matrix} \right)
Also
Let x_i\in \mathbb{N} and
x_1+x_2+x_3+\cdots+x_{k+2}=n+2
No comments:
Post a Comment