Friday, 22 November 2019

calculus - Not able to solve $intlimits_1^n frac{g(x)}{x^{p+1}} mathrm dx $



If $p=\frac{7}{8}$ then what should be the value of $\displaystyle\int\limits_1^n \frac{g(x)}{x^{p+1}} \mathrm dx $
when $$g(x) = x \log x \quad \text{or} \quad g(x) = \frac{x}{\log x}? $$



Wondering which way to proceed?




  1. an algebraic substitution,

  2. partial fractions,


  3. integration by parts, or

  4. reduction formulae.



Please don't suggest something like ("Learn basic Calculus first" etc).
Kindly help by solving if possible because I'm out of touch with calculus for nearly 15 yrs.


Answer



$$\frac{g(x)}{x^{p+1}}=\frac{x\log x}{x^{p+1}}=\frac{\log x}{x^p}$$



By parts:




$$u=\frac1{x^p}\;,\;\;u'=-\frac p{x^{p+1}}\\v'=\log x\;,\;\;v=x\log x-x$$



Thus:



$$\int\limits_1^n\frac{\log x}{x^p}dx=\left.\left(\frac{\log x}{x^{p-1}}-\frac1{x^{p-1}}\right)\right|_1^n+p\int\limits_1^n\frac{\log x}{x^p}dx-p\int\limits_1^n\frac1{x^p}dx\ldots\ldots$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...