Friday, 22 November 2019

real analysis - Integrate $int frac{sin^2(x)}{1+sin^2(x)}dx$



Got any ideas (what substitution should I use) to evaluate $$\int \frac{\sin^2(x)}{1+\sin^2(x)}dx~?$$



Answer



Write:
$$\frac {\sin^2 x} {1 + \sin^2 x} = \frac {1 +\sin^2 x - 1} {1 + \sin^2 x} = 1 - \frac 1 {1 + \sin^2 x} = 1 - \frac {\sec^2 x} {\sec^2 x + \tan^2 x} = 1 - \frac {\sec^2 x} {1 + 2\tan^2 x} $$



Now substitute $u = \tan x$ and the rest is easy.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...