Wednesday, 8 January 2014

abstract algebra - Elements of $E^{times},cdot$ of the quotient ring $E:= frac{mathbb{Z}_3[X]}{langle x^2 + x + 2rangle}$



Consider the field $E:= \frac{\mathbb{Z}_3[X]}{\langle x^2 + x + 2\rangle}$.
If I'm right the elements of the quotient ring can be found as:
$$a_0 + a_1x + \langle x^2 + x + 2\rangle.$$
So we got the possibilities in $\mathbb{Z}_3$:

$$\{0,1,2,\beta, 1+\beta , 2+\beta, 2\beta, 1+2\beta ,2+2\beta \}.$$
Here $\beta = \overline{x} = x + \langle x^2 + x + 2\rangle$ is a root of $x^2 + x+2$.
(Correct me if my notation is wrong.)



So how do we get the elements of unit of $E^{\times},\cdot$. I assume $1$ is in it, but don't know how to calculate the other elements. With the elements, what would be the Cayley table of $E^{\times},\cdot$?



Other little question: we know that $\beta$ is a solution of $x^2 + x+2$, what is the other root?


Answer



After I figured out how to proper multiplicate in a quotient ring via: Constructing a multiplication table for a finite field, I managed to find the unit elements by calculating every possible combination. I found for instance:
\begin{split}

\beta(1+\beta)& = x^2 + x + \langle x^2 + x + 2\rangle \\
& =x^2 + x + \langle x^2 + x + 2\rangle + (0 + \langle x^2 + x + 2\rangle)\\
&= x^2 + x + \langle x^2 + x + 2\rangle + 2x^2+2x+4+ \langle x^2 + x + 2\rangle\\
&= 3x^2+ 3x +4 +\langle x^2 + x + 2\rangle\\
&=0+0+1+\langle x^2 + x + 2\rangle\\
&=1
\end{split}

If I do this for the other elements, I find that
$(2+\beta)(1+2\beta)=1$ and $(2\beta)(2+2\beta)=1$.




So the elements of unit become: $E^{\times},\cdot = \{1,\beta,1+\beta,2+\beta,1+2\beta,2\beta,2+2\beta\}$. The Cayley table is found by multiplying all the elements with each other. They are calculated similar as above.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...