Wednesday, 8 January 2014

calculus - Help with $lim_{xrightarrow +infty} (x^2 - sqrt{x^4 - x^2 + 1})$




$\lim_{x\rightarrow +\infty} (x^2 - \sqrt{x^4 - x^2 + 1}) = ?$



I don't know how to solve the indetermination there... is it possible to rearrange the expression in brackets in order to use L'Hospital or Taylor Series?


Answer



Hint: $$x^2-\sqrt{x^4-x^2+1}=\left(x^2-\sqrt{x^4-x^2+1}\right)\cdot\frac{x^2+\sqrt{x^4-x^2+1}}{x^2+\sqrt{x^4-x^2+1}}=\frac{(x^2)^2-\left(\sqrt{x^4-x^2+1}\right)^2}{x^2+\sqrt{x^4-x^2+1}}$$



Once you have that simplified, multiply by $\dfrac{1/x^2}{1/x^2}$ and recognize that $x^2=\sqrt{x^4}$ to distribute the $1/x^2$ 'into' the radical.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...