When I evaluate the limit in the title above I get the following:
\begin{align}
\lim\limits_{n\to\infty}\dfrac{1}{\sqrt[n]{n}} &= \lim\limits_{n\to\infty} \dfrac{1}{n^{\frac{1}{n}}} = \dfrac{1}{\infty^0} \quad\Rightarrow\quad Indeterminate\\
&= \lim\limits_{n\to\infty}\left(\dfrac{1}{n}\right)^\frac{1}{n} = 0^0 \quad\Rightarrow\quad Indeterminate
\end{align}
But when I use a computer software (mathematica) to evaluate the same limit it says the limit is 1. What am I doing wrong?
Answer
Indeterminate forms can have values.
Note from L'Hospital's Rule that $\lim_{n\to \infty}\frac{\log(n)}{n}=\lim_{n\to \infty}\frac{1/n}{1}=0$. Hence, we have
$$\begin{align}
\lim_{n\to \infty}\frac{1}{n^{1/n}}&=\lim_{n\to \infty}e^{-\frac1n \log(n)}\\\\
&e^{-\lim_{n\to \infty}\left(\frac1n \log(n)\right)}\\\\
&=e^0\\\\
&=1
\end{align}$$
as expected!
No comments:
Post a Comment