I need to know why Euler's formula is true? I mean why is the following true:
$$
e^{ix} = \cos(x) + i\sin(x)
$$
Answer
Hint: Notice $$\sin (x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + ..... $$ and $$i\cos (x) = i - i\frac{x^2}{2!} + i\frac{x^4}{4!} - i\frac{x^6}{6!} + .... $$ Now add them and use the fact that $i^2 = -1$, $i^3 = -i$, $i^4 = 1$. You should obtain $e^{ix}$. Also notice: $$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ....... $$
No comments:
Post a Comment