Find the sum of the series $\frac{1}{1\cdot 2}+\frac{1\cdot3}{1\cdot2\cdot3\cdot4}+\frac{1\cdot3\cdot5}{1\cdot2\cdot3\cdot4\cdot5\cdot6}+...$.
This type of questions generally require a trick or something and i am not able to figure that out. My guess is that it has something to do with exponential series or binomial series. Any help?
Answer
Sorry guys, got it.
$\frac{1}{1\cdot 2}+\frac{1\cdot3}{1\cdot2\cdot3\cdot4}+\frac{1\cdot3\cdot5}{1\cdot2\cdot3\cdot4\cdot5\cdot6}+...=\frac{1}{2}\cdot\frac{1}{1!}+\frac{1}{2^2}\cdot\frac{1}{2!}+\frac{1}{2^3}\cdot\frac{1}{3!}+... = e^\frac{1}{2}-1.$
The first equality holds after cancelling the common terms in the numerator and denominator
No comments:
Post a Comment