Friday, 2 May 2014

Arc length of the curve y=ln(x)



Q: Find the arc length of the curve $y=\ln(x)$ where $x$ ranges from $\sqrt{3}$ to $\sqrt{15}$.



I think I am stuck in calculation part.




enter image description here



enter image description here



The answer is $2 + \ln(3) - \frac{1}{2}\ln(5)$. But I can't derive that from my last line.



help me, please.


Answer



Your problem now is how to evaluate the integral $$\int_{\sqrt{3}}^{\sqrt{15}}\frac{\sqrt{x^2+1}}{x}dx.$$




Let
$$F(x)=\int\frac{\sqrt{x^2+1}}{x}dx.$$
Let $x=\tan\theta$. All your computations after this substitution are all correct.
Note that $$\csc\theta=\frac{\sqrt{x^2+1}}{x}$$ $$\cot\theta=\frac{1}{x}$$ and
$$\sec\theta=\sqrt{x^2+1}.$$
Hence, we get
$$F(x)=-\ln\left(\frac{\sqrt{x^2+1}+1}{x} \right)+\sqrt{x^2+1}+C.$$
Thus,
$$

\begin{align}
\int_{\sqrt{3}}^{\sqrt{15}}\frac{\sqrt{x^2+1}}{x}dx&=F(\sqrt{15})-F(\sqrt{3})\\
&=\left[-\ln\left(\frac{5}{\sqrt{15}}\right)+4+C\right]-\left[-\ln\left(\frac{3}{\sqrt{3}}\right)+2+C\right]\\
&=\ln\left(\frac{3}{\sqrt{3}}\right)-\ln\left(\frac{5}{\sqrt{15}}\right) +2\\
&=\ln\left[\frac{3}{\sqrt{3}}\div\frac{5}{\sqrt{15}}\right]+2\\
&=\ln\left[\frac{3}{\sqrt{3}} \cdot \frac{\sqrt{15}}{5}\right]+2\\
&=\ln\left[\frac{3}{1} \cdot \frac{\sqrt{5}}{5}\right]+2\\
&=\ln\left[\frac{3}{1} \cdot \frac{1}{\sqrt{5}}\right]+2\\
&=\ln\left(\frac{3}{\sqrt{5}}\right)+2\\
&=\ln 3-\ln\sqrt{5}+2\\

&=\ln 3-\frac{1}{2}(\ln 5)+2.
\end{align}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...