Wednesday, 11 June 2014

calculus - Evaluating $int_{0}^{infty}{sin(x)sin(2x)sin(3x)ldots sin(nx)sin(n^{2}x) over x^{n + 1}},dx $



How can we calculate
$$
\int_{0}^{\infty}{\sin\left(x\right)\sin\left(2x\right)\sin\left(3x\right)\ldots
\sin\left(nx\right)\sin\left(n^{2}x\right) \over x^{n + 1}}\,\mathrm{d}x ?

$$



I believe that we can use the Dirichlet integral



$$
\int_{0}^{\infty}{\sin\left(x\right) \over x}\,\mathrm{d}x =
{\pi \over 2}
$$



But how do we split the integrand?



Answer



We have (theorem $2$, part $(ii)$, page 6) that:




If $a_{0},\dots,a_{n}
$ are real and $a_{0}\geq\sum_{k=1}^{n}\left|a_{k}\right|$, then $$\int_{0}^{\infty}\prod_{k=0}^{n}\frac{\sin\left(a_{k}x\right)}{x}dx=\frac{\pi}{2}\prod_{k=1}^{n}a_{k}.$$




So it is sufficient to note that if we take $a_{0}=n^{2},\, a_{k}=k,\, k=1,\dots,n
$ we have $$a_{0}=n^{2}\geq\frac{n\left(n+1\right)}{2}=\sum_{k=1}^{n}a_{k}

$$ hence




$$\int_{0}^{\infty}\frac{\sin\left(n^{2}x\right)}{x}\prod_{k=1}^{n}\frac{\sin\left(kx\right)}{x}dx=\frac{\pi n!}{2}.$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...