Saturday, 21 June 2014

calculus - The nth root of the geometric mean of binomial coefficients.



{Cnk}nk=0 are binomial coefficients. Gn is their geometrical mean.



Prove
limnGn1/n=e



Answer



G_n is the geometric mean of n+1 numbers:
G_n=\left[\prod_{k=0}^n{n\choose k}\right]^{\frac1{n+1}}
or with \log representing the natural logarithm (to the base e),
\log G_n = \frac1{n+1} \sum_{k=0}^n \log {n\choose k} = \log n! - \frac2{n+1} \sum_{k=0}^n \log k! \,.
Stirling's approximation is
n! \approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n
or
\log n! \approx \frac12\log{(2\pi n)}+n\log\left(\frac{n}{e}\right) = \left(n+\frac12\right)\log n+\frac12\log 2\pi-n
so
\eqalign{ \log \left(G_n\right)^\frac1n & = \frac1n \log G_n = \frac1n \log n! - \frac2{n(n+1)} \log \prod_{k=0}^n k! \\ & = \frac1n \log n! - \frac2{n(n+1)} \sum_{k=0}^n \log k! \\ & \approx \left(1+\frac1{2n}\right) \log n - \frac2{n(n+1)} \sum_{k=1}^n \left(k+\frac12\right)\log k - \frac1{2n}\log 2\pi \\ & \approx \left(1+\frac1{2n}\right) \log n - \frac2{n(n+1)} \left[ \frac{n(n+1)}{2}\log n - \frac{n(n+2)}{4} \right] - \frac1{2n}\log 2\pi \\ & = \frac{\log n-\log 2\pi}{2n} + \frac{n+2}{2(n+1)} \\ & \rightarrow \frac12 \,, }
where the sum of logarithms was approximated
using the definite integrals
\sum_{k=1}^n \log k \approx \int_1^n \log x\,dx = \Big[x\log x-x\Big]_1^n \approx \Big[x\log x-x\Big]_0^n
and
\sum_{k=1}^n k \log k \approx \int_0^n x\log x\,dx=\left[\frac{x^2}{2}\log x - \frac{x^2}{4}\right]_0^n
(using integration by parts as shown in a comment), so that
\eqalign{ \sum_{k=1}^n \left(k+\frac12\right)\log k &= \sum_{k=1}^n k \log k + \frac12 \sum_{k=1}^n \log k \\ &\approx \left( \frac{n^2}{2}\log n - \frac{n^2}{4} \right) + \frac12 \Big( n \log n - n \Big) \\ &= \frac{n^2+n}{2}\log n - \frac{n^2+2n}{4} \,. }
Thus
G_n=e^{\log G_n}\rightarrow e^{\frac12}=\sqrt{e} \,.



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...