Thursday, 26 June 2014

trigonometry - How prove this trigonometric identity



Show that




$$\sum_{k=0}^{n-1}\dfrac{\tanh{\left(x\dfrac{1}{n\sin^2{\left(\dfrac{2k+1}{4n}\pi\right)}}\right)}}{1+\dfrac{\tanh^2{x}}{\tan^2{\left(\dfrac{2k+1}{4n}\pi\right)}}}=\tanh{(2nx)}$$





Thank you ,This problem I take some hours,and at last I don't prove it



and This problem is from
enter image description here



This book have some same problem.all is not true? if not true,and we how find it or edit it somewhere?
enter image description here




enter image description here



Thank you achille hui,he told me this following maybe is true,Now How prove it?




$$\sum_{k=0}^{n-1}\dfrac{\dfrac{\tanh{x}}{n\sin^2{\left(\dfrac{2k+1}{4n}\pi\right)}}}{1+\dfrac{\tanh^2{x}}{\tan^2{\left(\dfrac{2k+1}{4n}\pi\right)}}}=\tanh{(2nx)}$$



Answer



Notice




$$\cosh(2nx) = T_{2n}(\cosh x)\quad\text{ and }\quad \cos(2nx) = T_{2n}(\cos x)$$



where $T_{2n}(z)$ is a
Chebyshev polynomial of the first kind. Using the $2^{nd}$ relation above, it is clear the roots of $T_{2n}(x)$ has the
form:
$$\pm\cos(\frac{2k+1}{4n}\pi),\quad\text{ for } k = 0,\ldots, n-1$$



From this, we arrive following expansion of $\cosh(2n x)$:



$$\cosh(2n x ) = A \prod_{k=0}^{n-1}\left(\cosh^2 x - \cos^2(\frac{2k+1}{4n}\pi)\right)$$

for some constant $A$ we don't care.
Taking logarithm, differentiate w.r.t $x$ and divide by $2n$ for both sides, we find:
$$\begin{align}
\tanh(2n x)
= & \frac{1}{2n} \sum_{k=0}^{n-1}\frac{ 2\sinh x\cosh x}{\cosh^2 x - \cos^2(\frac{2k+1}{4n}\pi)}\\
= & \frac{1}{n}\sum_{k=0}^{n-1}\frac{ \sinh x\cosh x}{\sinh^2 x + \sin^2(\frac{2k+1}{4n}\pi)}\\
= & \frac{1}{n}\sum_{k=0}^{n-1}\frac{ \tanh x}{\tanh^2 x + \sin^2(\frac{2k+1}{4n}\pi)(1 - \tanh^2 x)}\\
\\
= & {\Large \sum_{k=0}^{n-1}\frac{\frac{\tanh x}{n \sin^2(\frac{2k+1}{4n}\pi)}
}{1 + (\frac{1}{\sin^2(\frac{2k+1}{4n}\pi)} - 1 ) \tanh^2 x} }\\

\\
= & {\Large \sum_{k=0}^{n-1}\frac{\frac{\tanh x}{n \sin^2(\frac{2k+1}{4n}\pi)}
}{1 + \frac{\tanh^2 x}{\tan^2(\frac{2k+1}{4n}\pi)}} }\\
\end{align}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...