Saturday, 28 June 2014

How to compute the norm of a complex number under square root?

How to compute the norm of a complex number under square root? Does the square of norm equal the norm of square:





$\|\sqrt z\|^2 = \|\sqrt {z^2}\|$?




Let $z = re^{i\theta}$, then $$\|\sqrt z\|^2 =\|\sqrt {re^{i\theta}}\|^2 =
\|\sqrt r \sqrt {e^{i\theta}}\|^2 =\|\sqrt r {e^{1/2i\theta}}\|^2 = \|r {e^{i\theta}}\|.$$
And
$$\|\sqrt {z^2}\|=\|\sqrt {(re^{i\theta})^2}\| = \|\sqrt {r^2e^{2i\theta}}\|= \|{re^{i\theta}}\|.$$



I hope this is correct? Thank you.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...