Friday, 27 June 2014

calculus - Finding $ lim_{xto -2}~~ sin(frac{pi x}{2})frac{x^2+1}{x+2}$.



I would really appreciate if you could help me solving this limit problem!



Find the limit without using L'Hopital's rule!




$$ \lim_{x\to -2} \sin\bigg(\frac{\pi x}{2}\bigg)\frac{x^2+1}{x+2} = ?$$



Thank you in advance!


Answer



First, pull out $\lim_{x\to -2} (x^2+1)$ from the limit. Then, set $y=x+2$, which gives
$$\lim_{y\to 0}\frac{\sin \big((\frac{\pi}{2}y)-(\frac{\pi}{2}2)\big)}{y}=$$



$$=\lim_{y\to 0}\frac{-\sin(\frac{\pi}{2}y)}{y}=$$




$$=\lim_{y\to 0}\frac{-\frac{\pi}{2}\sin(\frac{\pi}{2}y)}{\frac{\pi}{2}y}=$$



$$=-\frac{\pi}{2}\lim_{\frac{\pi}{2}y\to 0}\frac{\sin(\frac{\pi}{2}y)}{\frac{\pi}{2}y}=$$
$$=-\frac{\pi}{2}$$



Now combine with the $5$ you pulled out previously to get $-\frac{5\pi}{2}$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...